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Introduction

This project focused on spectral analysis, especially
gap extraction into the high-temperature supercon-
dutor Bi-2212. To efficiently and correctly process
large amount of data, while maintaining flexibility
and distributability, Python is chosen as the lan-
guage to solve this problem.
While an ultimate definition of “gap size” does not
exist, we try to match the automatic calculated
result with human visual inspection result, while
maintaining consistency across different types of
spectra.

Why Use an Algorithm?

A powerful tool in its own right, Scanning Tunneling
Microscopy or STM allows experimenters to analyze
the relative number of electrons at each energy level
(density of state) around the Fermi Energy. This spec-
troscopic data provides information about the elec-
tronic properties of a material. However, the measure-
ment must be repeated numerous of times to obtain
high signal to noise ratio, ensuring features observed
are relevant. This is especially important at room
temperature where thermal energy contributes signif-
icantly to noise, as shown in some example spectra
below.
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Figure 1: Sample raw spectra from underdoped 78 K

Here we present an algorithm designed to filter
through noisy room temperature spectroscopic data
to uncover underlying trends and gap sizes in Bi-2212.

High TC Superconductivity and the
Bi-2212

First discovered in the mid 1980s the Bi-2212 is one
of the most studied classes of high-temperature super-
conductors. Much of the research into this material
has focused on the relationship and transition between
the so called “Pseudogap” phase, named for the gap in
the density of states around the Fermi energy, and the
superconducting phase which occurs at low tempera-
tures. But not much is known about the transition
between the normal metal and psuegogap which oc-
curs around room temperature in some samples. At
these temperatures the spectral gap can be difficult
to determine since it is not clearly demarcated with
a peak as in the low temperature data, therefore we
have developed an algorithm to determine the gap size
of each individual spectra to study the properties of
this gap.
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Important Result

This developed program could find the gap sizes of three types of spectra, with very good consistency
compared to vision inspection values.

Mathematics

Before gap determination, efforts are made to elimi-
nate as much noise as possible.
To explain this algorithm, consider the definition of
the gap. There should be a shoulder, or other types
of inflection on the spectroscopic data that hints the
edge of the gap. Some examples will be presented in
the result section.
To precisely identify this point, we take the fifth de-
gree polynomial fit of the positive section of the spec-
tra, to catch enough meaningful features of the trend
without picking up too much noise; and then we take
the third derivate of the fitted function, to find the
inflection points easily by calculating the roots of the
function. The is because inflection point of the cur-
vature indicates an end to the gap. Obviously, only
the root lying in the range of search is relevant. For
safety we pick the smaller one if more than one is in
the range.

Results

Below is the result generated by the program, from
flat (upper left), downward (upper right), and upward
(lower) ending towards the high positive bias side.
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Figure 2: Actual spectra of three types, marked with gap size
determined by the program

Conclusion
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Figure 3: Histogram of gap sizes, 10-boxcared, data size 1476

Above shown is the histogram of captured gap sizes,
for 1500 spectra collected from a 78 K underdoped
sample. The majority of peaks lies in the expected
range.
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Figure 4: Averaged spectra for different gap sizes, with y−offset

Above shown is the group average for all the spcectra,
with y−offset. The trend of gap sizes could be seen.


